A rule-extraction framework under multigranulation rough sets

نویسندگان

  • Xin Liu
  • Yuhua Qian
  • Jiye Liang
چکیده

The multigranulation rough set (MGRS) is becoming a rising theory in rough set area, which offers a desirable theoretical method for problem solving under multigranulation environment. However, it is worth noticing that how to effectively extract decision rules in terms of multigranulation rough sets has not been more concerned. In order to address this issue, we firstly give a general ruleextraction framework through including granulation selection and granule selection in the context of MGRS. Then, two methods in the framework (i.e. a granulation selection method that employs a heuristic strategy for searching a minimal set of granular structures and a granule selection method constructed by an optimistic strategy for getting a set of granules with maximal covering property) are both presented. Finally, an experimental analysis shows the validity of the proposed rule-extraction framework in this paper. keywords Multigranulation rough set Rule extraction Granulation selection Granule selection

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multigranulation single valued neutrosophic covering-based rough sets and their applications to multi-criteria group decision making

In this paper, three types of (philosophical, optimistic and pessimistic) multigranulation single valued neutrosophic (SVN) covering-based rough set models are presented, and these three models are applied to the problem of multi-criteria group decision making (MCGDM).Firstly, a type of SVN covering-based rough set model is proposed.Based on this rough set model, three types of mult...

متن کامل

Multigranulation rough sets: From partition to covering

The classical multigranulation rough set (MGRS) theory offers a formal theoretical framework for solving the complex problem under multigranulation environment. However, it is noticeable that MGRS theory cannot be applied in multi-source information systems with a covering environment in the real world. To address this issue, we firstly present in this paper three types of covering based multig...

متن کامل

Further Study of Multigranulation T-Fuzzy Rough Sets

The optimistic multigranulation T-fuzzy rough set model was established based on multiple granulations under T-fuzzy approximation space by Xu et al., 2012. From the reference, a natural idea is to consider pessimistic multigranulation model in T-fuzzy approximation space. So, in this paper, the main objective is to make further studies according to Xu et al., 2012. The optimistic multigranulat...

متن کامل

Multigranulation decision-theoretic rough sets in incomplete information systems

We study multigranulation decision-theoretic rough sets in incomplete information systems. Based on Bayesian decision procedure, we propose the notions of weighted mean multigranulation decision-theoretic rough sets, optimistic multigranulation decision-theoretic rough sets, and pessimistic multigranulation decision-theoretic rough sets in an incomplete information system. We investigate the re...

متن کامل

Evidence-theory-based numerical characterization of multigranulation rough sets in incomplete information systems

Multigranulation rough sets are desirable features in the field of rough set, where this concept is approximated by multiple granular structures. In this study, we employ belief and plausibility functions from evidence theory to characterize the set approximations and attribute reductions in multigranulation rough set theory. First, we show that in an incomplete information system, the pessimis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Machine Learning & Cybernetics

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014